The truth about solar panels – do the pros outweigh the cons?

This episode is brought to you by Squarespace. From websites and online stores to marketing
tools and analytics, Squarespace is the all-in-on platform to build a beautiful online presence
and run your business. Solar power has seen record growth over the
past decade, created an incredible number of new jobs, and is one of the most affordable
forms of generating energy. But with all of those panels popping up across
rooftops and open areas, what happens when it comes time to replace them? And do the environmental impacts of manufacturing
solar panels outweigh the benefits? I'm Matt Ferrell … welcome to Undecided. We’re surrounded by some incredible technologies
today and we often take most of it for granted.

Waiting in lines to buy the latest tech gadget
without thinking about what went into making it, or what will happen to the old gadget
its replacing. The same is true for renewable technologies
like solar. We take it at face value that solar power
is cleaner and better than the alternative of burning fossil fuels, but is it? We don’t often look at what kind of impact
and cost it takes to make solar panels. Or what will happen to them at the end of
life. And without taking that into account it leaves
open questions for people to doubt how effective solar panels really are compared to how we
currently generate most of our energy. Take a step back and you can see how quickly
things are shifting in favor of renewable energy generation. In the last decade solar has a 49% average
annual growth in the US, which has been spurred on by the Investment Tax Credit.

There’s enough solar installed today to
power almost 16 million homes … and it’s still growing. The largest portion of that growth has been
in utility scale solar installations at around 60 MW of capacity. Meanwhile during this boom, coal jobs have
been shrinking dramatically, by almost 50% … in 2012 there were almost 90,000 coal
jobs, but today there are around 46,000.. In comparison, the solar industry had around
250,000 jobs in the fall of 2019 … double what it was around 2012. This massive growth in solar has been a huge
boon to the economy and helped to drive solar panel prices down. It’s the same story in every industry: economies
of scale drive down prices. The cost of installing solar has dropped by
70% of the past decade, and is still dropping.

If you haven’t seen my recent video on Tesla’s
incredible per watt pricing here in the US, I’ll included a link in the description,
but we’re around $1.50 per watt right now for installation. Still higher than countries like Australia
and areas in Europe, but it’s heading in the right direction. Those dropping costs have pushed solar to
one of the cheapest forms of energy generation today. Utility scale solar is somewhere between $32-$44/MWh
… unsubsidized in the US. Compare that to coal, gas, or nuclear and
you can see why more and more utilities are canceling plans for building out new gas plants
in favor of solar.

Again, just look at solar’s drop in per
MWh pricing since 2009. So it shouldn’t be surprising that 40% of
new electric generating capacity built out in 2019 in the US was solar. And many companies have stepped up their own
solar installations to reduce costs and be more self-sufficient when it comes to power. By 2018 commercial solar installations were
at around 1.1MW between companies like Apple, Amazon, Target, Walmart, and Google. Before I get to why that’s important when
thinking about solar’s green credentials, I’d like thank today’s sponsor, Squarespace. I’ve been using Squarespace for years and
use it for the Undecided website. I’ve got over 25 years experience building
out websites, so I know it’s a full time job to build and maintain one. Squarespace takes care of all of it and let’s
you focus on the other work that matters for your business. I absolutely love the content management system
for publishing my articles and videos. You can customize and fine tune the look and
feel to get something that fits your personality and company’s brand. And you don’t have to worry about software
updates, web servers, or anything like that.

The all-in-one platform is my favorite part. If you want to build out a beautiful web presence
without the hassle, head over to Squarespace.com for a free trial and when you’re ready to
launch, go to squarespace.com/mattferrell to save 10% off your first purchase of a website
or domain. Thanks to Squarespace and to all of you for
supporting the channel. Why is the dropping cost of solar important
when thinking about solar’s green credentials? This type of cost analysis is called a Leveled
Cost of Energy comparison (LCOE), which creates an apples to apples comparison between the
different energy sources. It takes into account the cost of building
out the facility, the cost of sourcing materials and keeping it running, as well as the cost
of dismantling and disposing of the plant at end of life. It’s the full picture. So solar gets the nod from a cost perspective,
but how does it look from an environmental impact perspective? Well, there’s another form of apples to
apples analysis for that, too.

It’s called a Life Cycle Assessment (LCA)
and looks at everything from manufacturing to disposal. It’s the same thing as an LCOE, but looking
at the environment instead. Solar panels are made up of components like
silicon, metal framing, glass sheets, wires, and plexiglas. Nothing particularly shocking, but during
the manufacturing stage there are a lot of different types of chemicals used to clean
and purify the semiconductor surface. It’s not that dissimilar to making semiconductors
for computers. You’ll find things like hydrochloride acid,
sulfuric acid, nitric acid, hydrogen fluoride, acetone, and a few others when making a typical
panel, but it depends on the type of panel being manufactured. These chemicals take a lot of care when handling
and need to be disposed of properly, but their cost gives manufacturers a big financial incentive
to recycle and reuse them whenever possible.

For instance, silicon tetrachloride which
is used in some manufacturing processes, has a byproduct that can be used to create more
polysilicon … and more panels. Besides saving money, the biggest motivator
for solar panels is their reduced impact on the environment in the form of less carbon
dioxide equivalents released into the atmosphere. The manufacturing process is where the bulk
of solar’s impact is on the environment with between 0.07 – 0.18 lbs of carbon dioxide
equivalent per KWh. For a point of comparison, the lifecycle emission
rate for natural gas is 0.6 – 2 lbs of CO2E/kWh and coal is between 1.4 – 3.6 lbs of CO2E/kWh.

What about the energy it takes to manufacture
the panels? A common statement I hear a lot is that it
takes more energy to manufacture a panel that it will every produce over its life, or energy
pay back time (EPBT). It depends on what type of panel you’re
talking about and where it’s getting used, but in general a standard multi-crystalline
solar panel will pay itself off energy-wise in 4 years. Considering that the expected lifespan of
a solar panel is 30 or more years, that’s 26+ years of net positive energy production.

And thin-film solar panel modules pay themselves
back in energy production after 3 years. The estimates get even better when you take
into account future solar panels that are coming, which will have payback periods around
1-2 years. That means between 87%-97% of a solar panels
energy production is net positive. And that brings me to end of life … well,
not me … at least I hope not … wait, what have you heard? Anyway, this brings us to disposing of solar
panels (not me) once they reach the end of their usable life. We’re talking about 30 or more years of
expected time for the average panel. With 95% of solar panels in the US getting
installed since 2012, that means we may be looking at a large glut of panels coming to
end of life in the 2040s.

Not a lot of time to kick the can down the
road. It’s a common belief that solar panels can’t
be recycled, but that’s not true. After all we’re talking about silicon, metal
framing, glass sheets, wires, and plexiglas as the bulk of a solar panel. 80% of a typical solar panel is glass and
aluminum, which are easy to recycle. There are some heavy metals that have to be
extracted too, but we’re capable of recycling them. The basic process involves separating the
aluminum frame, which is 100% reusable. Then separating the glass along a conveyor
belt, which is about 95% reusable.

After that the cells are heated to 500 degrees
Celsius to evaporate small plastic components and to help separate the cells. The smelting process and etching away the
silicon wafers results in about 85% of reusable product. While individual aspects of recycling aren’t
difficult, it does require large amounts of heavy machinery and plants to be built out. It’s also made more difficult with how panels
are constructed into one tightly unified product. It can be an expensive process, but there’s
a financial incentive to go down this path anyway. A 2016 study from the International Renewable
Agency (IRENA) estimated that $15 billion could be recovered from recycling solar modules
by the year 2050. Recovered materials can be reused to manufacture
new panels, which could be cheaper than mining for new materials. Government policies can play a major role
in making sure we’re setting ourselves up for success here too. The EU has been more aggressive in their solar
recycling and end-of-life policies than we have been here in the US.

They’ve defined solar panels as e-waste,
which puts them under the [Waste Electrical and Electronic Equipment Directive](http://ec.europa.eu/environment/waste/weee/). This requires solar manufacturers to meet
certain recycling standards, which has created a marketplace for panel recyclers, one of
which is Veolia. They partner with the non-profit PV Cycle
in Europe to collect the panels and recycle them in a plant where robots separate the
components. Solar Energy Industries Association (SEIA)
has created a working group for recycling providers and offers benefits and discounts
to SEIA members. One example of that is Cleanlites, which isn’t
a dedicated solar recycler, but can handle recycling solar equipment. And solar companies like SunPower and First
Solar have their own recycling programs that allow customers to return old panels through
groups like PV Cycle to the manufacturer for recycling or reuse.

And not that I advocate for this, but there’s
a recent study from the International Energy Agency about the impacts of landfilling solar
panels, and it’s not as dire as you might think. The risks from lead in silicon PV panels is
about 1/10th below the risk levels set by the US Environmental Protection Agency. And for cadmium it’s even lower. Again, this isn’t an excuse to just dump
them in landfills, but the exposure to some of the heavy and toxic metals isn’t as great
as you might think. When you take the full picture of solar into
account from cost to manufacturing and disposal, it's undeniable that solar is a dramatic improvement
over fossil fuel forms of energy generation. There's a good reason why so many people,
companies, and governments are pushing into solar energy. So what’s your take? Jump into the comments and let me know what
you think about wind power. And as always a special thank you to all of
my Patrons. All of your support is really helping to make
this possible. If you liked this video be sure to check out
one of the ones I have linked right here.

Be sure to subscribe if you think I’ve earned
it. And as always, thanks so much for watching,
I’ll see you in the next one..

You May Also Like